考虑实际上,统计多少种染色方案,使得出现次数为奇数的颜色数<=n-2*m
其实看起来很像生成函数了
n很大?感觉生成函数会比较整齐,考虑生成函数能否把n放到数值的位置,而不是维度
有标号,EGF,发现奇偶性有关,其实就是e^x+-e^(-x)这种。(确实很整齐)
所以可以带着e^x化简
如果枚举奇数颜色数,再用两个EGF卷积搞来搞去,很麻烦
还要转化为路径?(可能上下阶乘很多吧。。。),这谁想得到
上面的方法之所以麻烦,是因为二项式展开之后存在三个sigma
不妨尝试去掉一个
怎么去掉?
反演!
钦定至少k个
这样,单纯e^x就简单很多!二项式展开将会少一个∑
处理系数:
然后fk可以卷积!
恰好有i个的gi,直接二项式反演即可!!!!
感觉就是用反演,把三个∑套在一起,变成了两个∑做两遍
就是,
枚举多少个奇数,隐含条件是,剩下的都要是偶数
而反演一下,剩下的就无所谓了
恰好,可以钦定若干个成为奇数,系数是组合数,二项式反演即可。